Sun et al. July 2020 paper in Science Advances

Martin Sweatman is a Reader (Associate Professor) at the University of Edinburgh. His research, involving the statistical analysis of the motion of atoms and molecules (statistical mechanics and molecular thermodynamics) has helped him solve one of the world’s greatest puzzles – the meaning of ancient animal symbols found in Palaeolithic caves, and at Gobekli Tepe and other places. This breakthrough enables the dating of prehistoric artworks using an entirely new method – zodiacal dating.

On July 31st 2020, Sun et al. published a paper in Science Advances [1] that suggests the Younger Dryas cooling event nearly 13000 years ago was triggered by the Laacher See volcanic eruption rather than a cosmic impact, the usual explanation. Until now, over 60 primary peer-reviewed journal papers together with dozens of supporting responses all agree the Younger Dryas event was caused by Earth’s collision with debris from a disintegrating comet. Only one paper has previously suggested it was caused by the Laacher See volcanic explosion – and that paper was thoroughly refuted only a year later.

In their new paper, Sun et al. focus on platinum group elemental abundances, and especially osmium isotope abundances and ratios, found in the sediment of Hall’s Cave, Texas. The sediment in this cave, many meters deep, has accumulated over tens of thousands of years, providing a convenient record of environmental conditions near the cave over this time (see photo below). An easily visible transition in the colour of the sediment at a depth around 1.51 m signifies a dramatic change in climate, and has been suggested to indicate the onset of the Younger Dryas climate anomaly when the Northern Hemisphere experienced a sudden return to near ice-age conditions for over 1000 years. This view is supported by the discovery in this boundary layer of the same kinds of microscopic impact debris found at many other Younger Dryas boundary sites across four continents [2]. So, it appears that Hall’s Cave is yet another record of this most dramatic and important cosmic impact event, thought to have reset human Cultures and extinguished many species of large animal across the globe. An event that is probably remembered by numerous extant religions, and might even have helped trigger the rise of our own civilisation [3].

However, the platinum group metal abundances in the sediment around the Younger Dryas boundary layer at Hall’s Cave have not previously been investigated. If the prevailing view is correct, we should find anomalies in them very close to this layer, since cosmic impacts generally produce enhancements in several of these elements. For example, the dinosaur-killing Chicxulub impactor was particularly rich in iridium, and coated Earth in an iridium-rich layer of dust and debris. However, we know from analysis of the GISP2 ice core in Greenland, that the Younger Dryas impactor was instead rich in platinum.[4] Since that discovery peaks in platinum concentration within sediments have been used to locate the Younger Dryas boundary accurately at many other sites [5].

Sun et al. focus on two platinum group metals in their new paper. They attach most importance to osmium, and the ratio of two osmium isotopes, even though the Younger Dryas impactor does not appear to be particularly rich in this rare metal. Certainly, an earlier report focussed on osmium only found abundances of this metal at a few Younger Dryas boundary sites, whereas the platinum enrichment has been found at most sites investigated [6]. Fortunately, Sun et al. also look for platinum enrichment at Hall’s Cave.

Their focus on osmium is curious. While it is true that asteroids – that originate from the asteroid belt in the inner solar system – tend to be rich in osmium, and osmium enhancement is therefore a good indicator of an asteroid strike, the same is not known to be generally true for comets. Yet the prevailing model of the Younger Dryas impact involves a highly fragmented comet, not an asteroid. It seems, then, that Sun et al.’s strategy is likely to lead to confusion. We’ll return to this issue later when we discuss their results.

Another complicating factor in the interpretation of Hall’s Cave is that volcanic eruptions can also produce abundances of platinum group metals, since these metals are more highly concentrated in Earth’s interior than its crust. So, by focussing on osmium, Sun et al. seem to be deliberately muddying the water, as osmium by itself cannot be used to distinguish between a volcanic eruption and a cosmic impact, especially if caused by a comet.

In fact, there are far better indicators and proxies for these very different events that can easily discriminate between them. Sulphates are known to be excellent in this respect, with a strong sulphate abundance clearly indicating a volcanic eruption. We know from high-resolution analysis of the GISP2 ice core that there is no significant sulphate signal at the onset of the Younger Dryas cooling [4]. Moreover, a strong sulphate spike in the GISP2 ice-core, thought to signify the Laacher See eruption, precedes the Younger Dryas climate transition by around 100 years and is not associated with any significant cooling. As the GISP2 ice core is sampled at roughly 3-year intervals, it is a much better record than Hall’s Cave, which is effectively sampled at 50 to 100 year intervals.

Analysis of ancient lake-bed sediments from a lake in the Czech Republic, with approximately 10-year resolution, supports this view [7]. A layer of Laacher See tephra underlies a layer of Younger Dryas boundary microspherules at a depth in these lake sediments equivalent to a difference of around 100 years. And, again, no significant cooling is observed immediately following the tephra abundance, while significant cooling accompanies the microspherules.

Furthermore, abundances of magnetic microspherules, containing over 85% iron, have been found at the Younger Dryas boundary layer in various locations, strongly indicating a cosmic impact and contra-indicating a volcanic eruption. Quite simply, it is impossible for a volcanic eruption to produce these iron-rich particles.

The Laacher See eruption is therefore unequivocally ruled out as the cause of the Younger Dryas boundary layer. Clearly, then, the focus on osmium by Sun et al., by itself a poor discriminator of a comet impact versus a volcanic eruption, is not useful in this debate.

So why do Sun et al. conclude that the Younger Dryas boundary at Hall’s Cave indicates the cooling event was likely caused by the Laacher See volcanic eruption instead, when we know this cannot be true? We need to look closely at their results to see how they arrived at this precarious position. Clearly, they ignored the evidence just discussed.

First, we should examine their age-depth model for the Hall’s Cave sediments, buried in the supplementary materials accompanying their paper (see Fig. S6). Immediately, we see a problem, in that no error bars are provided with this data. In a technical sense, this means we can have no confidence in this model. Sun et al. suggest the change in colour at 1.51 m corresponds to the Younger Dryas boundary layer, but without error bars, their age-depth model cannot be used to corroborate that. Fortunately, from earlier work [2], we know that Younger-Dryas-like impact debris is found at this depth, so this aspect of their age-depth model is likely correct.

We also see from their age-depth model that in the region of the boundary layer, 100 years corresponds to just 3 cm of sediment. In terms of the stratigraphy, then, the Laacher See volcanic explosion and Younger Dryas comet impact are expected to be separated by just 3 cm. Therefore, we should expect to find an osmium spike in the sediment between 1.54 and 1.56 m.

Examining, now, the main result of their paper (see Fig. 1), we do indeed see a conspicuous osmium abundance at 1.55 m, in perfect agreement with earlier work. Very likely, this corresponds to the Laacher See volcanic eruption. And yet, the authors suggest the boundary layer itself, at 1.51 m, likely corresponds to the Laacher See eruption even though we know from the GISP2 ice core and other sites, it cannot be.

To understand their mistake, we need to realise that at this depth in the sediment, and only at this depth, Sun et al. actually took 5 samples, not just 1. The five samples are all taken from between 1.51 and 1.52 m. But, we need to be careful here, because it is clear from their photo that the boundary layer in the sediment is not perfectly flat – it undulates slightly. Therefore, these laterally adjacent samples are not all measuring exactly the same timeframe – there will be small differences due to this undulation between them. And remember that each cm of sediment here corresponds to about 30 years – and the undulations appear to be stronger than that. So, we don’t expect these five samples to be identical – even though they are taken from exactly the same depth.

And, in fact, that’s exactly what we see in their main plot (Fig. 1). The five different samples taken at 1.51 m all have different osmium abundances and ratios. And only one of them shows an osmium anomaly, indicating a cosmic impact or volcanic eruption took place at this time. We already know it was a cosmic impact, but the authors’ argument for rejecting the impact scenario is that there is no abundance in platinum in this specific sample. And remember, our comet is thought to have been rich in platinum. Therefore, they conclude in favour of a volcanic eruption.

However, they are being selective, and fail to mention that one of the other samples at 1.51 m does exhibit a platinum anomaly. We only find this out by looking carefully at their raw measurements hidden in the supplementary materials.

What should we make of that? What is going on here? We know these signals don’t have a volcanic origin, so an explanation in terms of a cosmic impact is required. The undulation in the cave sediments has already been mentioned. Moreover, if platinum and osmium-loaded debris from the impact took different physical pathways through the environment, which is likely because these metals have quite different physical and chemical properties, they might have arrived in the cave at different times, perhaps separated by many years. We already know from the GISP2 ice core that the main platinum signal is over 10 years ‘wide’, meaning platinum-laden dust settled-out from the atmosphere only very slowly. If osmium arrived at the cave more quickly, then the undulating nature of the sediment in the cave will likely lead to fluctuations in the abundances of these metals when measured at different lateral locations.

Or, perhaps instead, the platinum and osmium abundances are patchy – the so-called “nugget” effect. Essentially, clumps of these rare metals – probably bound-up inside other kinds of particle, might have been distributed unevenly across the floor of the cave shortly after the impact event. Or perhaps both explanations are correct – perhaps the undulating nature of the boundary, the different physical pathways through the environment of osmium and platinum, and the nugget effect are all in play here.

Whatever, it is perfectly clear the authors have been selective. They selected one out of five samples in which there is an osmium abundance and no platinum abundance, to conclude that the Younger Dryas climate change was caused by a volcanic explosion. They could just have easily based their conclusions on the sample with the platinum abundance, but no osmium abundance, to favour the comet impact scenario instead. Or, if we average across all 5 samples, we should conclude there is neither a platinum nor osmium abundance. And where does that leave us?

Probably, the best interpretation of this data, given the overwhelming evidence from other Younger Dryas boundary sites of a comet impact, is that there is both an osmium and a platinum anomaly at 1.51 m in Hall’s Cave, supporting the comet impact scenario, and that the fluctuations in these readings are possibly caused by the above-mentioned effects. In my view this should have been their conclusion.


[1] N. Sun et al., Volcanic origin for the Younger Dryas geochemical anomalies ca. 12,900 cal B.P., Sci. Adv. 2020; 6 : eaax8587.

[2] T.W. Stafford et al., Testing Younger Dryas ET impact (YDB) evidence at Hall’s Cave Texas, American Geophysical Union, Fall Meeting 2009, abstract id. PP33B-08.

[3] M. Sweatman, Prehistory Decoded (Matador, 2019).

[4] M.I. Petaev et al., Large Pt anomaly in the Greenland ice core points to a cataclysm at the onset of Younger Dryas, PNAS 2013; 110 : 12917.

[5] C.R. Moore et al., Widespread platinum anomaly documented at the Younger Dryas onset in North American sedimentary sequences, Sci. Rep. 2017; 7 : 44031.

[6] Y.Z. Wu et al., Origin and provenance of spherules and magnetic grains at the Younger Dryas boundary, PNAS 2013 ; 110 : E3557.

[7] G. Kletetschka et al., Cosmic-impact event in lake sediments from Central Europe postdates the Laacher See eruption and marks onset of the Younger Dryas, J. Geol. 2018; 126 : 561.

Books by Martin Sweatman

Prehistory Decoded

Nearly 13,000 years ago millions of people and animals were wiped out, and the world plunged abruptly into a new ice-age. It was more than a thousand years before the climate, and mankind, recovered.

The people of Gobekli Tepe in present-day southern Turkey, whose ancestors witnessed this catastrophe, built a megalithic monument formed of many hammer-shaped pillars decorated with symbols as a memorial to this terrible event. Before long, they also invented agriculture, and their new farming culture spread rapidly across the continent, signalling the arrival of civilisation.

Before abandoning Gobekli Tepe thousands of years later, they covered it completely with rubble to preserve the greatest and most important story ever told for future generations. Archaeological excavations began at the site in 1994, and we are now able to read their story, more amazing than any Hollywood plot, again for the first time in over 10,000 years. It is a story of survival and resurgence that allows one of the world's greatest scientific puzzles - the meaning of ancient artworks, from the 40,000 year-old Lion-man figurine of Hohlenstein-Stadel cave in Germany to the Great Sphinx of Giza - to be solved.

We now know what happened to these people. It probably had happened many times before and since, and it could happen again, to us. The conventional view of prehistory is a sham; we have been duped by centuries of misguided scholarship. The world is actually a much more dangerous place than we have been led to believe. The old myths and legends, of cataclysm and conflagration, are surprisingly accurate.

We know this because, at last, we can read an extremely ancient code assumed by scholars to be nothing more than depictions of wild animals. A code hiding in plain sight that reveals we have hardly changed in 40,000 years. A code that changes everything.

4 thoughts on “Volcanic or cosmic impact origin of the YD mini ice-age? New evidence from Hall’s Cave, Texas”

  1. ats says:

    They’re clearly not mutually exclusive events. A cosmic impact of the proposed magnitude would induce volcanic activity, among other seismic events.

  2. Ronald Sechler says:

    The earth is growing and expanding, because it has a fission core. The growing and expanding causes the earth to go out of balance over time. Asteroid or comet impacts send shock waves through the crust and mantle of the earth, causing the crust to crack and break allowing mantle material to flow out over the crust. As balance is quickly lost the earth experiences an extreme wobble. All extinction events and major mass extinction events are cause by the growing and expanding earth. Yes, there is more, much more.

  3. Ad Roest says:

    When will researchers accept the fact that the earth is suffering from a regular recurring “space impact”. A real impact does not return regularly so the cause of this is not a comet. Ancient books tell us that this must be caused by a heavenly body that causes a cycle of seven natural disasters. The only cause of such a cycle is a ninth planet in our solar system. That exists says NASA but they don’t see it. Ancient sources know about an invisible ‘star’. I reconstructed our history using many ancient sources including the bible. The most recent worst “space impact” occurred in the year 10,844 BC.

  4. Casual Visitor says:

    For the record, I was the first to discover and publicly claim on the Cosmic Tusk site (in the comments) that the Laacher See eruption was caused by an impact, namely that this was a minor impact on a volcanic field which resulted in subsequent eruption. In Laacher See tephra, all 14 rare earth elements have enhanced abundances by the factor of 20-30, and there are other anomalies which make this eruption quite unique.

    It is the only known impact caused eruption. You should credit me for rediscovering that, in 2015.

    The event happened on June 29, 10,961 BC, Gregorian calendar,and it is the year marked on the Göbekli Tepe’s Pillar 43. Sweatman’s claim of 10,950 BC +/- 250 a for this I reduced to 10,961 BC +/- 0 years, and I wrote a follow-up paper to MAA journal promptly when Sweatman wrote his paper. I wrote it timely, but it was rejected from publication, because it was a follow-up supportive research, not a knee-jerk critique, like the other 3 submitted articles were.

    I have also been name-called ‘Sweatman’s only supporter’, which I am not, and yet for years Sweatman persistently refused to reply to any of my comments of his work, whether pro, or against, even though he argued with everyone else. I find it extremely rude.

Leave a Reply

Your email address will not be published. Required fields are marked *

Some basic HTML is allowed.